Migration and distribution of complex fracture proppant in shale reservoir volume fracturing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Simulation Approach to Model Complex Fracture Networks in the Shale Formation Considering Gas Desorption

Hydraulic fracturing in shale gas reservoirs has usually resulted in complex fracture network. The results of micro-seismic monitoring showed that the nature and degree of fracture complexity must be clearly understood to optimize stimulation design and completion strategy. This is often called stimulated reservoir volume (SRV). In the oil & gas industry, stimulated reservoir volume has made th...

متن کامل

Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and pr...

متن کامل

Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Natural Gas Industry B

سال: 2018

ISSN: 2352-8540

DOI: 10.1016/j.ngib.2018.11.009